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1 Introduction

It is a fundamental insight, received from the standard analysis of tax eva-
sion, that efficiency calls for tax evaders to be charged the maximally feasible
fine. A sufficiently high fine even makes it possible to implement the first best
solution. Kolm (1973), taking up an argument introduced by Becker (1968),
famously claimed that efficiency considerations in a world with costly detec-
tion would require tax evaders to be hung with a probability approaching
zero. The intuition is that a given deterrence effect can be achieved at lower
cost by decreasing detection efforts and increasing severity of punishment.1

In order to explain why historically the severity of punishment for crimes
has been declining since the middle ages while the cost of enforcement has
been increasing, economists have to resort to the argument that the general
acceptability of severe forms of punishment has decreased.2 But, hypothet-
ically speaking, even if we were to reject the idea that tax evaders should
be hanged, would it not make sense to make them liable with their whole
belongings to vouch for the correctness of their tax declarations?

In this paper we show that even if the government follows a narrowly
defined objective of maximizing its tax revenue, it may find it worthwhile
to charge tax evaders less than the maximally feasible amount. We re-
consider the question of optimal punishments in an equilibrium framework
where the enforcement agency itself adjusts its behavior to the actions of
the citizens.3 For this we apply the equilibrium tax evasion model of Lands-
berger/Monderer/Talmor (2000) - henceforth LMT - to a predatory set-
ting where the maximally feasible monetary punishment is imposed on tax
evaders. We characterize equilibria of the income reporting game. We show
that introducing the possibility for the government of granting a grace value
eliminates multiplicity of equilibria. Moreover, we show that for a small
tax rate and small auditing cost the possibility to commit to a discretionary
punishment relief scheme increases expected tax revenue.

1See Borck (2004), Boadway/Richter (2005) and Dittmann (2006) for a discussion of the
relative merits of different fine regimes in the standard model. Theoretical consequences of
different fine regimes in the economics of crime are discussed in Polinsky/Shavell (2000).

2Dami/al-Nowaihi (2006) give an overview of approaches to solve this issue. They argue
that if citizen behavior is explained by prospect rather than expected utility theory less
severe punishment can be optimal.

3Pyne (2004) shows that with behavioral adjustments by police officers to legal stan-
dards, making it harder to convict criminals can reduce crime.
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In order to appreciate our approach, imagine King John setting the tax
rate for the whole of his lands but delegating the task of enforcing the tax
rule to local sheriffs.4 The sheriff hires tax inspectors as subcontractors on
the promise that they may keep anything that falls into their hands if a
village they inspect is found to have paid less than the proper tax. Here, the
inspectors - enforcement agencies essentially - impose the maximum fine as
the villagers vouch with all their belongings for even a small breach of the
tax code. Would it be desirable for King John to restrain his enforcers and
impose less than the maximum fine on at least some undutiful villages?

In an equilibrium model of tax evasion it is not immediately clear what
the answer to this question is.5 If the fine is lowered compared to the preda-
tory equilibrium where undutiful villages are looted, the decreasing reward
to the enforcers induces a reduction of their efforts. Just like in the stan-
dard model of tax evasion, villagers respond by increasing tax evasion. A
full account of equilibrium behavior, however, has to allow for a changing
composition of evading villages. The unique limit predatory equilibrium is
characterized by the poorest villages underreporting, intermediate villages
acting strictly honestly while the richest village is indifferent between these
two options. In those circumstances it could pay for the King John to be
more lenient with an intermediate village which hands in a false report if it
could thereby persuade the richest village not to hand in precisely the same
false report. Here, in equilibrium, the former reports will drive out the latter.
We can show that if the intermediate villages’ total post tax income which
can be appropriated by the tax inspectors does not exceed the total post tax
income of the richest villages there generally exists a stable revenue superior
equilibrium with discretionary punishment relief.6

As we point out in our discussion, our results generalize to settings where
the sheriff acts as a profit maximizer and do not hinge on the assumption

4We refer here, of course, to the mythological villain also known as Prince John. That
the historical figure, King John, signed the magna carta which is the first document to
formally constrain the powers of government, adds a nice twist to our story.

5Note that in an Nash equilibrium zero tax evasion cannot be supported except in
trivial cases: It cannot be an equilibrium for no-one to submit a false report because the
enforcement agency would not want to audit any income report. But if no income reports
are audited every citizen would want to deviate and submit a false income report with
positive probability.

6In a modern variant of this tale, German minister of finance Steinbrueck has, after
some consideration, decided to subject citizens availing of the Swiss tax haven to less than
the maximally feasible scrutiny.
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that revenue from tax evasion does not accrue to the king. The reason why
we choose our particular motivating story is that it naturally suggests non
commitment as a behavioral standard whilst with a monolithic tax adminis-
tration there might be conflicts between attempts to commit to more rigorous
tax enforcement in the short term and adaptive behavior in the long term. It
is a remarkable result of our analysis that making a certain degree of commit-
ment available in a Nash equilibrium turns behavioral standards suboptimal
which are obtained as optimal standards in a model with full commitment.

Equilibrium models of tax evasion have been pioneered by Reinganum
and Wilde (1986) and LMT . Alm and McKee (2004) report experimental
results on coordination games where the tax authorities select their auditing
strategy endogenously. Reinganum/Wilde construct a separating equilibrium
where each citizen underreports and the enforcement agency can correctly
infer their type. However, due to increasing auditing costs only a fraction
of reports in each income category is actually audited. In the equilibrium
of Reinganum/Wilde the government applies an audit probability which de-
creases in reported income. LMT focus on a model with an exogenously
given, linear fine on evaded tax, linear auditing costs and risk neutral citizen
who may use randomized reporting strategies. In equilibrium, income reports
are audited up to a threshold level, citizens with income above the threshold
report just more than the threshold and citizens below the threshold random-
ize over all income reports and are indifferent to truth telling. All reported
income levels which get audited are audited with the same probability.

In our model, by contrast, for sufficiently low detection costs, all citizens
with incomes above a threshold strictly prefer evading taxes over truth telling
but randomize over the report which they submit. The income threshold it-
self is the highest income reported - and audited - in equilibrium. Citizens
below the threshold income are either honest or report zero income. The
existence of a threshold income level can be easily understood: In the preda-
tory situation citizens end up with the same (zero) income when detected.
Because for any false income report, a richer individual saves more taxes
than a poor individual, a rich individual is always more easily persuaded to
submit any given false report. That the zero income report is potentially
attractive for every income group is a consequence of the linear specification
of the model. An agent is indifferent between a lottery in which she looses
everything with probability r′ and having her income taxed at rate r′. As
a consequence, the income reporting game admits multiple equilibria, each
of which is supported by a detection probability which decreases in reported
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income. a unique equilibrium, however, obtains if there is a vanishingly small
”grace” value which is left to detected tax evaders. Such a grace value has
relatively more worth to poorer villagers, so they tend to be more easily
tempted to submit a false report. The only equilibrium surviving this refine-
ment is one where the richest village is indifferent between truth-telling and
evasion and the poorest evade. Moreover, we demonstrate that if the king can
commit to a discriminatory fine scheme which depends on the tax evaders’
true and reported income, tax revenue may increase. In particular, for suffi-
ciently small tax and detection cost, stable, revenue superior equilibria with
commitment generally exist.

Section 2 sets out the model. Section 3 derives and refines the predatory
equilibrium. Section 4 discusses the substantive effects of a commitment
possibility. Section 5 concludes.

2 The model

Income y is a realization of an integer in Y = {y0, .., yN} with y0 = 0.7 In
the (finite) population, the probability that an agent is of type yk is nk. We
assume for every k, nk > 0. We consider a two stage signalling game where
in the first stage of the model citizens declare their income for tax purposes.
A citizen of income class yk reports income xi ∈ Xk where Xk = {y0, .., yk}.
That is, an income in Y may be reported and no citizen reports more than her
true income. There is a proportional tax rate on declared income τ ∈ (0, 1).
In the second stage, each tax enforcer is assigned a class of income reports, xi,
for which he is in sole charge8 and he subsequently selects an audit probability
for those income reports. If an income report gets audited, the enforcer incurs
a cost c. In the situation with predation, if a tax evader who has reported
xi is detected to have income yk, his fine f (yk, xi) is net income after taxes
minus a grace level D(yi, xi). Initially, we assume that the grace level is
constant and small, i.e. it satisfies D < (1− τ )y1.

Citizens maximize expected income and tax enforcers maximize expected
net receipts from enforcement. A citizen with income yk chooses a (mixed) re-
porting strategy which is a vector βk = (β(yk, xi))xi∈Y with

∑
xi∈Y β(y

k, xi) =

7Our results generalize to the case where there is a minimum income level , y0 > 0,
which is exempt under the fine and under the tax scheme.

8As strategy choices are constrained to satisfy the the equilibrium conditions, our
results do not change if we allow for assignments of competing audition rights.
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1.9 The probability that xi is announced if strategy vector β(., xi) is used is

hi =
∑

yk∈Y

nkβ(yk, xi)

The probability that an agent is of type yk when she announces xi is

q(yk|xi) =
β(yk, xi)nk

hi
. (1)

Tax enforcers choose probabilities p = (p(xi))xi∈Y . The (expected) cost
of auditing income xi with a probability p(xi) is p(xi)hic. For a tax enforcer
in charge of auditing xi, the expected net profit from selecting an audition
probability p(xi) is

π(xi)(β,p) = hip(xi)K(xi), (2)

where β = (βk)0≤k≤N and

K(xi) =
∑

yk∈Y

q(yk|xi) f(yk, xi)− c, (3)

the marginal gain from auditing a citizen who reports xi. A citizen’s
objective function is Ek(β,p) = yk−

∑
xi≤yk β(y

k, xi)τxi−
∑

xi<yk β(y
k, xi)×

p(xi)f(yk, xi). A strategy configuration is a Nash equilibrium if

π(xi)(β∗, p(xi)
∗,p∗−i) ≥ π(x

i)(β∗, p(xi),p
∗
−i) for all i

and

Ek(β∗,p∗) ≥ Ek(βk, (β−k)∗,p∗) for all βk and for all k.

It is easy to see that for hi > 0 and in the absence of constraints on the
detection technology a government agent chooses p(xi) = 1 if K(xi) > 0 and
p(xi) = 0 if K(xi) < 0. If hi = 0 or K(xi) = 0 it may select any detection
probability. In order to focus on such xi which are actually reported we need

Definition A report xi is in the support of β, or xi ∈ S(β), if hi(β) > 0.

9Citizens with the same income select the same mixed strategy. We are not concerned
here with the purification of mixed strategy equilibria.
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3 Predatory equilibrium

Given detection probabilities p(xi) and p(xj) we denote indifference between
two signals xi and xj for income group yk as (xi, p(xi)) ∼yk (xj, p(xj)). A
citizen i is indifferent between reporting xi and truthfully reporting yk if

p(xi)D + (1− p(xi))(yk − τxi) = (1− τ )yk. (4)

(4) equates expected income with report xi and the certain net income with
the truthful report yk. It defines for each income the indifference set cor-
responding to the security level which this agent can ensure in the game
by telling the truth. It is convenient to extend the domain of the indiffer-
ence relation to define indifference contours on (x, p) which are continuous
in (R+0 )

2 and each of which contains one indifference set. Indifference con-
tours are concave shaped, decrease in y and intersect the x-axis at (yk, 0).
For D > 0 the contour relating to an agent’s security level intersects the
p-axis at (0, p(yk, D)) with p(yk, D) > τ . Security contours of agents with
higher income have a smaller p-intersect. Security contours intersect at a
signal level ξ with p(ξ) = τ . For D = 0, ξ = 0. Higher indifference con-
tours are located left below the security contour. For any two indifference
contours passing through some (x′, p′), x′ > 0, the one relating to the lower
income citizen is steeper. By the following lemma, indifference sets for two
individuals intersect at most in one point other than x0:

Lemma 1 For xi: 0 < xi < y′, xj: xi < xj < y′ and constant D: If at
given auditing probabilities p(xi), p(xj) a citizen with income y′ is indifferent
between reporting xi and xj all citizens with income y′′ > y′ strictly prefer
reporting xj over xi.

Proof. y′ weakly prefers xj over xi if p(xj)D + (1 − p(xj))(y′ − τxj) ≥
p(xi)D+(1−p(xi))(y′−τxi). Rearranging yields (p(xj)−p(xi))D ≥ (p(xj)−
p(xi))(y−τxi)+(1−p(xj))(xj−xi). ForD < y−τxi this implies p(xj) < p(xi).
The claim is confirmed by substituting y′′ > y′ in the indifference condition.

If for one income group yk
∗

truth-telling and reporting some xi are weakly
preferred over all other strategies then all other y have strict preferences over
reporting xi or truth-telling. The proof of the following lemma is in the
appendix and uses the fact that security contours intersect at (ξ, p = τ ).
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Lemma 2 For xi > 0, y′′ > y′ and constant D: If at p(xi), y′ is indifferent
between truth-telling and reporting xi then (a) if p(xi) < τ , y′′strictly prefers
reporting xi; (b) if p(xi) = τ , y′′ is also indifferent and (c) if p(xi) > τ , y′′

strictly prefers truth-telling.

Let Ik be the set of reports which a citizen with income yk is prepared to
submit, i.e. which maximize her utility.

Lemma 3 Let D be a constant. Then in equilibrium there can be at most
one income group yk

∗

for which there is a report xi > ξ and xi, yk ∈ Ik.

Proof. Let there be an income report xi ∈ (0, yk
∗

) and an audit proba-
bility p(xi) such that yk

∗

∼yk∗ (x
i, p(xi)) and xi, yk

∗

∈ Ik
∗

.
a) Assume that there is an income report x′ ∈ (0, y′) such that for y′ > yk

∗

we have y′ ∼y′ (x′, p(x′)). Then by lemma 2 (xi, p(xi)) �y′ y′. Reporting xi

at p(xi) is feasible and, therefore, y′ /∈ I ′.
b) Next, consider y′′ < yk

∗

. Say there is y′′ ∼y′′ (x′′, p(x′′)) for some
x′′ ∈ (0, y′). But because x′′ < yk

∗

the result of part a) equally applies for y′′

and yk
∗

/∈ Ik
∗

, a contradiction.
For D = 0 we have ξ = 0 such that everyone is indifferent between truth-

telling and reporting x0 if p(0) = τ . For c sufficiently small, we can construct
an equilibrium for this game with a pivotal income group yk

∗

. Citizens with
y < yk

∗

are either honest or report x0. Citizens with y > yk
∗

are tax evaders.

Proposition 4 Suppose that D ≡ 0. We focus on equilibria where there is
a highest report xm, such that x ∈ S(β) for all x ≤ xm and x /∈ S(β) for
x > xm. An equilibrium for this income reporting game is characterized by
an threshold income level yk

∗

and an assignment of indifference sets Ik which
satisfies the constraints

IN = {xr
N−1

, .., xk
∗

} and
∑xk

∗

xi=xrN−1
β(yN , xi) = 1, (5)

Ik = {xr
k−1

, .., xr
k

} and
∑xr

k

xi=xr
k−1
β(yk, xi) = 1: k∗ < k < N,(6)

Ik
∗

= {x0, .., xr
∗

, yk
∗

} and β(yk
∗

, yk
∗

) +
∑xr

∗

xi=x0
β(yk

∗

, xi) = 1, (7)

Ij = {x0, yj} and β(yj, yj) + β(yj, x0) = 1 for j < k∗, (8)

β(yk, xi) ∈ [0, 1] for yk �= xi and β(yk, yk) > 0 for yk ≤ yk
∗

, (9)

K(xi) = 0 for x0 < xi ≤ xk
∗

, (10)

p(xi) ≥ 0 for x0 ≤ xi ≤ xk
∗

supports Ik for all k ∈ N . (11)
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Figure 1: Indifference contours in (x, p)-space and potential reports Ik, sup-
porting an equilibrium (β,p) of the income reporting game.

In such an equilibrium all agents with y > yk
∗

evade taxes, all agents with
yk < yk

∗

either report honestly or report x0. p(x0) = τ and p(x) decreases
in x . This equilibrium is unique up to the selection of yk

∗

and β(yk, yk) for
yk ≤ yk

∗

. The equilibrium exists if c satisfies the constraints

c <

∑yN

yk>x′
nk
(
yk − τx′)

)
∑yN

yk>x′
nk

for all x′ > min(xk
∗

, xN−1) (12)

c <

∑k∗−1
k≥1 n

kβ(yk, yk)yk
∑k∗−1

k≥0 n
k

. (13)

The proof of this proposition is in the appendix. Figure 1 illustrates the
equilibrium conditions: In an equilibrium satisfying proposition 4 the set of
potential reports Ik for any two groups of the rich (yk > yk

∗

) with adjacent
income levels overlap in one report. c has to be smaller than average income
for the poor (yk < yk

∗

) by (13) and smaller than average net income for the
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rich if they report some income x′ exceeding xk
∗

, the income of group k∗

by (12). The equilibrium is supported by beliefs which ensure that everyone
who submits a report exceeding xk

∗

is audited. In a Bayes-Nash perfect equi-
librium such a belief held by the government would be that the probability
of receiving such a report from type yN is 1. We can construct many equi-
libria of the type of proposition 4 by perturbing the reporting probabilities
β(yk, yk) of citizens with income below yk

∗

, ensuring K(x0) = 0. Different
choices of β(yk, yk) may be compatible with different choices of yk

∗

. The
source of this multiplicity is the fact that with D ≡ 0 in an equilibrium ev-
eryone may submit a report x0. Below we show that with some arbitrarily
small uncertainty about the magnitude of the punishment this source of mul-
tiplicity is eliminated. Another source of a possible multiplicity of equilibria
is the magnitude of detection cost c. While an equilibrium always exists
unless c is prohibitive, there is an intermediate range for c where the equi-
librium conditions can be fulfilled by more than one choice of k∗. However,
this ambiguity vanishes for sufficiently small c.

Proposition 5 For sufficiently small c the equilibrium is unique with k∗ =
N up to a selection of β(yk, x0), yk < yk

∗

.

Proof. See part 3 of the appendix.
The following proposition shows that for a grace value D > 0, only equi-

libria are possible where there is y < yk
∗

such that all yk < y report x0, y is
indifferent between being honest and reporting x0 and everyone with yk > y
strictly prefers being honest over reporting x0. For vanishing D we get a
refinement of the equilibria compatible with proposition 4.

Proposition 6 Say an equilibrium exists for D = 0. Now let D : 0 < D <
(1−τ )y1. Then in every equilibrium there is y such that β(yk, x0) = 1 for all
yk < y, β(yk, x0) ≤ 1 for yk = y and β(yk, x0) = 0 for yk > y. Furthermore,
these strategies are equilibrium strategies. Letting D→ 0, the resulting limit
equilibrium is also an equilibrium of proposition 4.

Proof. See part 4 of the appendix
The following proposition is immediate from propositions 5 and 6:

Proposition 7 For sufficiently small c and D→ 0 there is a unique preda-
tory equilibrium.
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4 Is there a role for commitment?

Say King John considers making a promise to relieve some citizens from
the most severe punishment. This may take the form of raising D for all
his subjects or to announce a shielded income D(yi, xi) which depends on
true and reported income. The king would do so if under such a regime he
expected an increase in tax revenue.

We have already shown that imposing a small punishment relief, D =
ε −→ 0 eliminates equilibria from the tax evasion game. We now ver-
ify whether revenue superior equilibria become available once we introduce
commitment to a discriminatory punishment relief scheme in the limit equi-
librium of proposition 6. We verify whether deviating from such an equi-
librium by choosing D(yk, xi) > ε for a single report/income pair (xd, yj)
is an optimal strategy for the king. What we have to achieve is to make
one agent y < yj < yk

∗

indifferent between truth-telling and saying xd,
0 < xd < yj. We then adjust randomization probabilities for yj and yk

∗

to satisfy the equilibrium conditions. Say in the limit equilibrium we have
(xd, p(xd), ε) ∼k∗ (xd+1, p(xd+1), ε) ∼k∗ ... ∼k∗ y

k∗. First, observe that we
cannot lower the probability of p(xd) or yk

∗

would strictly prefer report-
ing xd over reporting honestly. Therefore, we adjust D(yj, xd), i.e. the in-
come which is left for yj if she reports xd and is detected to ensure that
(xd, p(xd), D) ∼yj y

j. It is easy to show that for this to be the case the con-
ditionD(yj, xd) = τ

p(xd)
(yj−xd) must hold. For yk

∗

, we revokeD(yk
∗

, xd) = ε,

so an agent of income class yk
∗

does no longer consider submitting income
report xd. Clearly, such a policy avoids introducing additional multiplicity
of equilibria. In part 5 of the appendix (lemma 15), we show that if all types
have equal probability such a policy is also optimal to replace all xd income
reports from yk

∗

by reports from yj , whenever it is optimal to replace some
reports. Furthermore, we only consider cases where c is sufficiently small
such that β(yk

∗

, xd)′ = 0 is compatible with equilibrium10. For simplicity, let
also yk

∗

= yN . We can use definitions (1) and (3) to get

β(yk
∗

, xi) =
1

nk∗
nic

yk∗ − τxi − c
for i = d, j (14)

in the original equilibrium with D −→ 0. In the new equilibrium

10If the condition K(xi) cannot be met this way, one would want to set D(yj, xd) such
that all yj strictly prefer xd to truthtelling and leave D(yk

∗

, xd) = ε.
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β(yj , xd)′ =
1

nj
ndc

yj − τxd −D(yj, xd)− c
, (15)

β(yk
∗

, xj)′ =
1

nk∗
(1− β(yj, xd)′)njc

yk∗ − τxj − c
(16)

must hold. (14) ensures that an enforcer is willing to verify any report
in the xi-category at a cost of c when the probability that a report is truth-
ful is ni/(βnk

∗

+ ni) and the probability that a report submitted by a tax
evader with a true income of yk

∗

, promising the enforcer a fine of yk
∗

− τxi,
is βnk

∗

/(βnk
∗

+ni). In the new equilibrium, yj replaces yk
∗

in submitting re-
ports in the xd-category according to (15). The equilibrium condition (16) for
xj-reports submitted by yk

∗

displays an indirect effect of increasing β(yj , xd),
as the reduction in the equilibrium probability of honest reports of xj drives
out some of the dishonest reports of xj by yk

∗

. Tax paid by yk
∗

and yj in the
original equilibrium is τ [(1−β(yk

∗

, xd)−β(yk
∗

, xj))nk
∗

yk
∗

+β(yk
∗

, xj)nk
∗

xj+
β(yk

∗

, xd)nk∗xd+njyj] and in the new equilibrium τ [(1−β(yk
∗

, xj)′)nk
∗

yk
∗

+
β(yk

∗

, xj)′nk
∗

xj + β(yj , xd)′njxd+ (1− β(yj, xd)′τnjyj]. The change in tax is
positive if

∆ = β(yk
∗

, xd)nk
∗

yk
∗

+ [β(yk
∗

, xj)− β(yk
∗

, xj)′]nk
∗

(yk
∗

− yj) (17)

−β(yj, xd)′njyj + [β(yj, xd)′nj − β(yk
∗

, xd)nk∗]yd > 0.

It makes sense to restrict attention to revenue superior equilibria with
commitment which satisfy an additional stability requirement:

Definition 8 An equilibrium is deterring if for any two income groups yj,
yk, yk > yj and any feasible report xi there is no coalitional deviation which
increases β(yj, xi) to some level β(yj, xi) ≤ 1 such that K(xi) < 0.

It is easy to see that equilibria of proposition 4 are deterring and that
revenue superior equilibria where the construction satisfies conditions (1), (2)
and (3) are also deterring. The reason why we introduce this refinement at
this point is that punishment relief invites citizens with lower incomes such as
yj to replace citizens with higher income yk

∗

in submitting a dishonest report
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xi in equilibrium. There could be equilibria which unravel if the invitation is
taken up by sufficiently many citizens: if yj−τxi−D < c no tax enforcer will
ever want to investigate xi even if he knows almost for sure11 that a citizen
who reports xi is a tax evader with income yj. It is possible for the revenue
superior equilibria to depend on sufficiently few citizens of lower income yj

to take up the invitation (this might also be an optimal policy if conditions
(1) and (2) are violated). The condition K(xi) = 0 may be fulfilled if higher
income earners yk submit reports of xd. But clearly, such equilibria would
not be very interesting if they unravel once the unattractive targets of tax
enforcers take up the invitation in greater numbers.

The following proposition gives conditions under which a revenue superior
equilibrium with partial punishment adjustment exist:

Proposition 9 If all types have equal probability ni and for sufficiently small
c and τ , there always exist income levels yk

∗

, yj and yd such that ∆ > 0.
Moreover, the equilibrium reached in the new game with partial commitment
is deterring.

Proof. See appendix.
It should be noted that this result is quite theoretical as with vanishing

cost the probability of a true report converges to 1 under any regime. The
following example shows that the increase in tax from punishment relief is
not unsubstantial:

Example 10 Let y0 = 0, y1 = 1, y2 = 1.4, y3 = 2. Total income is 4.4 and
all types have equal probability. The tax rate τ = 0.5 and detection cost c =
0.3. Consider an equilibrium of proposition 4 where yk

∗

= 2 with strategies
β(y1, x0) = 0.4286, β(y2, y2) = 1, β(y3, x1) = 0.1429 and β(y3, x2) = 0.3 and
detection probabilities p(x1) = 0.3333 and p(x2) = 0.2308. Sheltering assets
worth 0.3 from punishment if y2 is detected when she has reported x1 raises
tax receipts from 1.8243 to 1.8329. The equilibrium with punishment relief is
supported by strategies β(y2, x1) = 0.5714 and β(y3, y2) = 0.1286.

The following table sums up our results for different levels of c:
c 0.0001 0.1 0.2 0.3 0.4 0.5
Tax rev. old 2.199893584 2.0877 1.9628 1.8243 1.6727 1.5125
Tax rev. new 2.199893585 2.0883 1.9659 1.8329 1.6889 1.5125

11The cost of auditing most likely consists of the cost of visiting the citizen and the cost
of ascertaining the truth.
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We observe that the gains from commitment remain positive but vanish as
detection cost gets very small. For detection costs of c = 0.5 a cornersolution
is obtained. For intermediate values, gains in tax receipts can reach 1 percent
for c=0.4.

5 Discussion and Conclusion

This paper has shown that a tax reporting game with a predatory govern-
ment relying on decentralized tax enforcement with maximally feasible fines
generically displays multiplicity of equilibria. Introducing a small but general
punishment relief significantly reduces the number of equilibria. If detection
costs are also small, there exists a unique limit equilibrium with punishment
relief. Furthermore, we have shown for a limiting case that granting punish-
ment relief is a way of increasing government revenue. In particular, this is
the case if income levels are sufficiently widely spread, types have equal prob-
ability and detection costs and tax rates are small. Whilst general existence
can be shown under those conditions, gains from commitment are vanishingly
small. However, we provide examples where the gains from commitment are
substantial.

A few remarks are due on the assumptions we make to derive our results:
Whilst it would appear as if assuming away fines as a source of income for
the king unduly advances the case for penalty reduction, our results are more
general than the particular setting suggests. With linear detection costs,
the tax enforcement activity always creates zero profits ex post. Moreover,
despite our assumption that decisions are decentralized to each individual
tax enforcer, nothing would change if it was the sheriff who acted as a profit
maximizer. The equilibrium conditions we derive continue to be relevant if
one maximizes aggregate profits. The same results would hold even if the
king himself were to enforce his tax laws, provided that he cannot commit
himself to impose other than the ex post optimal detection policy.

Needless to say that our results critically hinge on how we define the
feasible set on which the maximum penalty is defined. When unbounded
penalties induce unbounded negative returns, even the first best solution may
be implemented. On the other hand, decision makers are typically willing to
accept fatality risks in particular when the probability is sufficiently small.
In addition, actually meting out the harshest punishments requires some sort
of commitment on the side of the enforcers. Once we accept that pay offs are
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bounded, it makes sense to identify the feasible set with the positive income
and the assets which the government can seize and which otherwise could be
taxed.12 This has the advantage that fines and taxes are defined on the same
opportunity set. Moreover, this arrangement satisfies the ulterior fairness
test in dividing resources between the citizen and the state of letting Caesar
have what belongs to him. Finally, in our motivating story, we assert the
death penalty to be infeasible because villagers always have the option to
escape into the dark woods of Sherwood forest.

Actually playing the equilibrium of this game, even if it is unique, re-
quires a high degree of coordination on the side of citizens. Full coordination
might be difficult to achieve (see Alm/McKee, 2004). In particular, the use of
randomized strategies might be seen as counterintuitive. However, if agents
have different preferences for tax evasion, it may be possible to support equi-
libria in purified strategies. Finally, the assumption of risk neutral citizens
is of course restrictive. To the extent that risk aversion makes poor citi-
zens relatively more reluctant to evade taxes it works against the strategy
configuration in the unique limit equilibrium. However, the set of equilib-
ria described in proposition 4 would still provide some guidance as to which
strategy configuration to expect. Our conjecture is that risk aversion would
favour an equilibrium where all y < yk

∗

strictly prefer reporting truthfully.
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6 Appendix

6.1 Proof of lemma 2

Let there be an income report xi ∈ (0, yk
∗

) and an audit probability p(xi)
such that yk

∗

∼yk∗ (xi, p(xi)) and xi, yk
∗

∈ Ik
∗

. Now consider y′ > yk
∗

. We
had denominated (ξ, p(ξ) = τ ) the intersection of security contours, i.e. for
y′ and yk

∗

we have p(ξ)D+(1−p(ξ))(y−τξ) = (1−τ )y. For D = 0, we have
p(xi) < p(ξ), xi > ξ. Because the security contour of y′ passes right above
(xi, p(xi)), y′ strictly prefers (xi, p(xi)) over truth-telling. For D > 0 we find
that if p(xi) = p(ξ) then ξ = xi ≡ x̂ and xi is on the security contour of both
y′ and yk

∗

. If p(xi) < p(ξ), then ξ < xi and y′ prefers (xi, p(xi)) to telling the
truth. Finally, if p(xi) > p(ξ), then ξ > xi and the security contour passes
left below xi, i.e. y′ prefers truth-telling.
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Next, consider y′′ < yk
∗

. For D = 0, p(xi) < 0, ξ < xi, the security
contour of y′′ passes right below (xi, p(xi)) and y′′ strictly prefers truth-
telling. The same is true for D > 0, p(xi) < p(ξ). For D > 0, p(xi) ≥ 0,
truth-telling is dominated for y′′. Collecting arguments, if p(xi) < p(ξ) all
y > yk

∗

strictly prefer lying over truth-telling and all y < yk
∗

strictly prefer
truth-telling over lying and the relationships are reversed for p(xi) > p(ξ).

6.2 Proof of proposition 4

Before we establish the proposition we need to prove two claims:

Claim 11 p(x0) > τ is not an equilibrium

Proof. Suppose p(x0) > τ were true. In that case everybody rather
reports truthfully than reporting x0. But then h0 = n0 > 0 and K(x0) < 0
so the tax enforcer picks p(x0) = 0, a contradiction.�

Claim 12 Let p(x′) > 0 and x′, x′′ ∈ S(β). Then, in equilibrium it must be
that p(x′′) < p(x′) if x′′ > x′ for all x′ ≥ 0.

Proof. Suppose that not. Then for all yk > x′′ it is the case that
x′ �yk x

′′. But then K(x′′) < 0 and because x′′ ∈ S(β) the tax enforcer sets
p(x′′) = 0, a contradiction.�

From claim 12 follows immediately that K(xi) = 0 for all xi ∈ S(β),
xi ≤ xm. Suppose that not. Then p(xi) is either 0 or 1. The latter case is
trivial given claim 11 and 12, so focus on p(xi) = 0. In that case, no x′ ≥ xi

is audited and it must be that xi > xm, contradicting that xi ∈ S(β).
We now construct equilibria satisfying K(xi) = 0, ∀xi ∈ S(β). All xi ∈

S(β) must be named in some false reports. By lemma 3 there can be only
one income yk

∗

such that yk
∗

∈ Ik
∗

and xi ∈ Ik
∗

for some xi �= x0. Therefore,
yk < yk

∗

prefer reporting truthfully over reporting x > x0 and yk > yk
∗

prefer submitting a false report over reporting yk. By lemma 2, Ik and Ij,
k �= j intersect at most in one point and in general Iy

k

∩ Iy
j

�= ∅ if we want
to fulfill

∑
xi∈Ik β(y

k, xi) = 1 for a tax evader (i.e. yk > yk
∗

). Note that our
definition of equilibrium includes the case where Ik∩I j = ∅ as we can always
set β(y, xr) = 0 for one agent. Finally, by (13) we can fulfill K(x0) = 0 only
using agents with y < yk

∗

.

Claim 13 xm = min(xk
∗

, xN−1), where xk
∗

is the truthful report of yk
∗

, and
xk

∗

∈ IN .
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Proof. Note that xm ∈ S(β). If xm > xk
∗

, β(ym, ym) = 0 by lemma
1. Suppose that xm = xN−1 > xk

∗

. Then K(xN−1) = yN − τxN−1 − c > 0
for all β(yN , xN−1) > 0. By (12), K(xN−1) > 0, so p(xN−1) = 1. Pro-
ceeding to xm = xN−2, .., xk

∗+1, we find that for any xm > xk
∗

having

c <

∑yN

yk>xm
nk(yk−τxm))

∑yN

yk>xm
nk

fulfilled subsequently for all m = N − 2,N − 3, ... is

sufficient to ensure that K(xm) > 0. This is condition (12). Because xN is
never audited, xm > xk

∗

is impossible if xk
∗

= xN or xk
∗

= xN−1. Suppose
the sign in (12) is reversed. Then K(xm) < 0 and p(xm) = 0.

If xk
∗

/∈ IN then no one submits a false report xk
∗

, so K(xk
∗

) < 0. Finally,
we have to check that it is actually optimal for yN not to submit a report
x′ > xk

∗

: As by claim 11, p(x0) ≤ τ such a report is clearly dominated.�
By the following claim we can actually construct profiles p(xi) to support

Ik:

Claim 14 The constraint p(x) ≥ 0 is never binding.

Proof. Let xk
∗−1 ∈ Ik

∗

∩ Ik
∗+1. Because the contour corresponding to

Ik
∗+1 cuts from below Ik

∗

at xk
∗−1 and Ik

∗

contains the point (p = 0, xk
∗

), it
must be that p(xk

∗

) > 0 to have xk
∗

∈ Ik
∗+1. The same is true if xr

∗+1

is reached via a sequence of indifference conditions for xr
∗+1 ∈ Ik

∗+1 ∩
Ik

∗+2, .., xk
∗−1 ∈ IN−1 ∩ IN where the contour corresponding to the set with

the higher index cuts the other from below (see the graph).�

6.2.1 Existence and uniqueness

Choose β′(y, x0) and β′(y, y), y < yk
∗

such that K(x0) = 0. By (13) such a
profile exists. Here we set β(yk

∗

, x0) = 0. (5)-(7) give the following system
γ = Bβ∗ with

γ =




1
1

β ′(yk, yk)
1

β′(yr
∗+1, yr

∗+1)
1

β′(yr
∗

, yr
∗

)




, β∗ =




β(yN , xk
∗

)
β(yN , xk)
β(yN−1, xk)
β(yN−1, xr

∗+1)
β(yk

∗+1, xr
∗+1)

β(yk
∗+1, xr

∗

)
β(yk

∗

, xr
∗

)
β(yk

∗

, xj)




,
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B =




aN,k
∗

· · · 0

1 1
...

aN,k aN−1,k

1 1
aN−1,r

∗+1 ak
∗+1,r∗+1

1 1
... ak

∗+1,r∗ ak
∗,r∗

0 · · · ak
∗,j




where ak,i = nk(yk − τxi − c) and we have used β(yk
∗

, yk
∗

) = 1 −∑
β(yk

∗

, xj) in the first row of B to replace aN,k
∗

= β(yk
∗

, yk
∗

). For con-
creteness and in order to save space we have imposed N = k∗ + 3, taken
#Ik = 2 for yk > yk

∗

, set β(yk
∗

, x0) = 0, and used a typical element ak
∗,j for

0 ≤ j < r∗.13

B has full rank. So given k∗ and a selection of β(y, y) for y < yk
∗

to satisfy
K(x0) = 0 the solution of β∗ = B−1γ uniquely determines β∗. Furthermore,
given that the ak,i’s are all positive and all β(yi, yi) > 0, yi < yk

∗

, looking

at a typical expression, n
kβ∗(yk,xi)(yk−τxi)+nk+1β∗(yk+1,xi)(yk+1−τxi)
niβ′(yi,yi)+nkβ∗(yk,xi)+nk+1β∗(yk+1,xi)

= c with c <

yk − τxi, ni ≥ 1, it is easy to see that we can solve the system such that all
coefficients in β∗ are positive and smaller than 1.

An equilibrium exists for c → 0 with k∗ = N . Now let β(yk, x0) = 0
for all 0 < k < k∗ and define cmax the maximum c for which that there is
an equilibrium for k∗ = 1 under this constraint on β.14 We have to show
that there is an equilibrium for all c′, 0 < c′ < cmax. For convenience, we
write βki for β(yk, xi) and yki for yk − τxi. We show that an equilibrium for
c < cmax always exists but that in general this equilibrium is not unique.
The equilibrium exists if for increasing threshold values, k∗ = J, k∗′ = J +1,
cmax(J + 1) ≥ cmin(J) and, consequently, there is no c′ with cmax(J + 1) <
c′ < cmin(J). The equilibrium is not unique, if the inequality is strict, because
there is c′′ with cmax(J + 1) > c′′ > cmin(J) for which an equilibrium with
k∗ = J or k∗′ = J + 1 can be constructed.

Let k∗ = 1. Choose I1 = {x0, x1}, IN = {x0, x1} and Ik = {x0} for

13The extension is straightforward, notably for each added xi, add one line and one
column and for each added y > yk

∗

add two lines and two columns.
14Such defined cmax ≤ c, the greatest c which satisfies (12) and (13).
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k = 2, ..., N − 1, thereby satisfying (5)-(8). At x0:
∑N−1

i=2 n
iyi + β10n

1y10 + β
N
0 n

NyN0

n0 +
∑N−1

i=1 n
i + β10 + β

N
0 n

N
= c0(1)

and at x1:

βN1 n
NyN1

(1− β10)n
1 + βN1 n

N
= c1(1).

Determine β such that cmin(k∗ = 1) = min(max(c0(1), c1(1))). Clearly, it
must be that β10 = 0. Now let k∗ = 2. We have x1, x2 ∈ IN and x0, x1 ∈ IN−1.
At x0:

∑N−2
i=3 n

iyi + β20n
2y20 + β

N−1
0 nN−1yN−10

n0 +
∑N−2

i=3 n
i + β20 + β

N−1
0 nN−1

= c0(2).

At x1:

βN−11 nN−1yN−11 + βN1 n
NyN1

n1 + βN−11 nN−1 + βN1 n
N

= c1(2)

and at x2:

βN2 n
NyN2

(1− β20)n
2 + βN2 n

N
= c2(2).

We can determine β′ such that ci(2) = cmin(1), i = 0, 1, 2. For this choose
β10 = 0 and βN−10 = 1. Because cmax(2) ≥ ci(2) it must be that cmax(2) ≥
cmin(1). We can also see that the solution is in general non unique: cmax(k∗ =
2) is in general obtained for βN−10 �= 1: Suppose that βN−10 = 1 and nNyN →
0. Then βN−11 = 0 and c1(2) < c0(2), contradicting that c is maximal.
Because the expression for c0(1) implies that βN−10 = 1, we have cmax(k∗ =
2) > cmin(k∗ = 1) for βN−10 �= 1.

For the general case we determine cmin(J) for k∗ = J and construct β
for J + 1 which is feasible and supports c = cmin(J), so cmax(J + 1) ≥ c =
cmin(J). Say that for k∗ = J we have found β supporting cmin(J) with
IJ = {x0, .., xr

1

, yJ}, Ik = {xr
k−1

, ..., xr
k

} for N ≥ k > J with xr
N

= xJ .
For concreteness, let IJ = {x0, yJ} and IJ+1 = {x0, x1} so we obtain typical
expressions such as, at x0:

βJ0n
JyJ0 + β

J+1
0 nJ+1yJ+10

n0 + βJ0n
J + βJ+10 nJ+1

= c0(J),
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at x1:

βJ+11 nJ+1yJ+11 + βJ+21 nJ+2yJ+21

n1 + βJ+11 nJ+1 + βJ+21 nJ+2
= c1(J),

at xJ :

βNJ n
NyNJ

βJJn
J + βNJ n

N
= cJ (J).

In cmin(J) we have βJ0 = 0, βJJ = 1. Now let k∗′ = J + 1 with cor-
responding IJ ′ = {yJ}, IJ+1′ = {x0, x1, yJ+1}, Ik′ = Ik for k < N and
IN = {xJ−1, xJ , xJ+1}. At x0:

βJ+10 nJ+1yJ+10

n0 + βJ0n
J + βJ+10 nJ+1

= c0(J + 1),

at x1:

βJ+11 nJ+1yJ+11 + βJ+21 nJ+2yJ+21

n1 + βJ+11 nJ+1 + βJ+21 nJ+2
= c1(J + 1),

at xJ :

βNJ n
NyNJ

nJ + βNJ n
N

= cJ(J + 1).

at xJ+1:

βNJ+1n
NyNJ

βJ+1J+1n
J+1 + βNJ+1n

N
= cJ (J + 1).

Letting βJ+1J+1 → 0 and βNJ+1 → 0 we can fulfill the condition for xJ+1 and

for all other k βk′i → βki so we have ci(J + 1) → cmin(J). Because β was
selected to minimize c it must be that cmax(J + 1) > ci → cmin(J).

For the last step, we consider k∗ = N−1. The minimum cost is sustained
with IN−1 = {x0, yN−1} and IN = {xi}N−1i=0 . At x0:

βN−10 nN−1yN−10 + βN0 n
NyN0

n0 + βN−10 nN−1 + βN0 n
N

= c0(N − 1), (18)
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at xi

βNi n
NyNi

ni + βN−1i nN−1
= ci(N − 1), i = 1, ..,N − 2, (19)

at xN−1:

βNN−1n
NyNN−1

nN−1βN−1N−1 + β
N
N−1n

N
= cN−1(N − 1). (20)

The minimum is attained by setting βN−10 = 0 and choosing all βNi , i �= N
such that all K(xi) = 0. Switching to k∗ = N , we have IN = {xi}N0 . At x

i:

βNi n
NyNi

ni + βNi n
N

= ci(N ), i = 0, .., N − 1. (21)

βN−10 is also feasible for k∗ = N and we have cmax(N) ≥ cmin(N − 1).

6.2.2 Show that p(x0) = τ .

Finally, we show that if the equilibrium of the reporting game satisfies
(5)-(13), then p(x0) < τ is not compatible with an equilibrium of this
game: Suppose p(x0) < τ were true. In such an equilibrium, everybody
has at least one strategy which is strictly better than truth telling, so ev-
erybody evades taxes. If we had p(x0) = 0 everybody would report x0, so
this cannot be an equilibrium. In order to construct an equilibrium with
p(x0) ∈ (0, τ ) with we need K(x) = 0 for all x ∈ {x0, .., xm}. In an
equilibrium satisfying (9) we have β(yk, yk) > 0 for yk ≤ yk

∗

and, there-
fore,

∑
xi≤xk

∗
,xi∈S(β)

∑
yk>xi q(y

k|xi) < 1. Now consider the equilibrium with

p(x0) < τ . Reports xi > xm cannot occur in equilibrium (see the proof
of claim 8 in the appendix) so in an quilibrium where everybody evades,∑

xi≤xm,xi∈S(β)

∑
yk>xi q(y

k|xi) = 1. Therefore, xm > xk
∗

. But this can-

not be an equilibrium either under condition (12) because xm ∈ S(β) and,
therefore, p(xm) = 1 (see proof of claim 8).
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6.3 Proof of proposition 5

Using conditions (18)-(21) in part 2 of the appendix we now show that for c
sufficiently small the equilibrium is unique. For c→ 0 there is an equilibrium
with k∗ = N where N ’s strategy satisfies

∑i=N−1
i=0 βNi → 0. Show that in

general cmin(k∗ = N − 1) > ε, ε > 0. Recall that the population is finite and
all nk ≥ 1 and X is finite as well. From the conditions for ci(N − 1) letting

βN−10 = 0 we get cmin = min( βN0
n0+βN0 n

N , ...,
βNN−1n

NyN

nN−1+βNN−1n
N ) which is bounded

from zero because
∑i=N−1

i=0 βNi = 1.

6.4 Proof of proposition 6

For D > 0 we have p(yk, D) > τ . Say there is (x0, p(yk, D)) ∼y′ y
′. Then by

lemma 2 all y′′ > y′ strictly prefer truth-telling to reporting x0.
Choose the smallest y such that K(x0) = 0 with β(y, x0) ≤ 1 and

β(yk, x0) = 1 for all yk < y and select p(x0) to satisfy p(x0)D+(1−p(x0)) =
(1− τ )y. By lemma 2, all y′ > y prefer truth-telling to reporting x0 and all
y′′ < y prefer reporting x0 to truth-telling. This rules out any equilibrium
with β(yk, x0)′ �= β(yk, x0). Because in an equilibrium of proposition 4 c
satisfies (12) and (13) there must β and y < yk

∗

with β(yk, x0) ≤ 1, yk ≤ y
such that K(xi) = 0 for all xi ∈ S(β).

Finally, in order to show that the limit equilibrium is also an equilibrium
of proposition 4, recall that this equilibrium satisfies p(x0) = τ . For D → 0,
p(y1,D)→ τ = p(x0). The strategy profile β for the case D > 0 implies that
x0 ∈ Ik for some yk ≤ y and xi ∈ Ik

∗

such that K(xi) = 0 for all xi ∈ S(β).
But then β satisfies the conditions in proposition 4.

6.5 Proof of proposition 9

In the following we write βki for β(y
k, xi).

Lemma 15 If all types have equal probability, whenever ∆ > 0 for some
βj(yj, xd) > 0, it is optimal to select βj(yj, xd) such as to fulfill K ′(xd) = 0.

Proof. Totally differentiating the condition for K ′(xd) = 0 we ob-

tain dβk
∗

(yk
∗

,xd)

dβj(yj ,xd)
= −nj [N(yj−τxd−D)−1]

nk
∗
[N(yk

∗
−τxd)−1]

with yjd = yk
∗

− τxd − D and N =

β(yk
∗

, xd)nk
∗

+ β(yj, xd)nj + const. Because yk
∗

> yj, it follows that yk
∗

−
τxd −D > yj − τxd. If group sizes are equal, N increases as we substitute
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β(yj, xd) for β(yk
∗

, xd) and this reinforces the marginal effect on β(yk
∗

, xd).

The effect on revenue is dT

dβ
j
d

= τ [
dβkd

dβ
j
d

(yk − yd) + (yd − yj) −
dβkj

dβ
j
j

dβ
j
j

dβ
j
d

(yk − yj).

Here
dβ

j
j

dβ
j
d

= −1 and
dβkj

dβ
j
j

is constant such that the claim follows.

As the lemma shows, when the government wants to see β(yj, xd) in-
creased at all, it is optimal to set D(yk

∗

, xd) = 0. In that case, citizens want
to satisfy the equilibrium condition at xd by adjusting β(yj , xd). By con-
struction, such an equilibrium, if it exists, is deterring. It remains to show
that there generally exist income levels such that ∆ is positive.

Combining (14) and (16) we find that βk
∗

j − β
k∗′
j = βk

∗

j β
j′
d . Recalling the

definition xj = yj, we can re-write (17) to give ∆/τ = [βk
∗

d + βk
∗

j β
j′

d ]n
k∗yk

∗

−

(βk
∗

j β
j′
d n

k + βj′d n
j)yj + (βj′d n

j − βk
∗

d n
k∗)xd. Using the indifference condition

(4) for yk
∗

and yj at xj and xd in the expressions (14)-(16) we get

∆ =
ndc

1−τ
1−p(xd)

yk∗ − c
(yk

∗

− yd) +
c

1−τ
1−p(xj)

yk∗ − c

ndc

Ξ
(yk

∗

− yj)−
ndc

Ξ
(yj − yd)

with Ξ = 1−τ
1−p(xd)

yj − D
1−p(xd)

− c. Recall that (yk
∗

> yj > yd). Deviding

by (yk
∗

− yd) and defining α = (yj−yd)

(yk
∗
−yd)

we get

∆ > 0⇐⇒
ndc

1−τ
1−p(xd)

yk∗ − c
+

c
1−τ

1−p(xj)
yk∗ − c

ndc

Ξ
(1− α) >

ndc

Ξ
α

Further, we write

1−τ
1−p(xd)

yj − D
1−p(xd)

− c
1−τ

1−p(xd)
yk∗ − c

+
c

1−τ
1−p(xj)

yk∗ − c
(1− α) > α

In order to prove the claim we let c −→ 0. After some straightforward
manipulation the expression converts into

yj − D
1−τ

yj − yd
>

yk
∗

yk∗ − yd
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We know D = 1−τ
p(xd)

(yj−yd). From the indifference condition of yk
∗

in the

original equilibrium we get p(xd) = τ (yk
∗

−yd)

yk
∗
−τyd

. Inserting the expression for D
yields after some transformations

yj

yj − yd
>

yk
∗

yk∗ − yd
+

1

1− τ

yk
∗

− yd

yk∗ − τyd

Now, letting τ −→ 0 we find the condition

yj

yj − yd
>

yk
∗

yk∗ − yd
+
yk

∗

− yd

yk∗

If yk
∗

gets large relatively to yd, the right hand side converges to 2. So we
just have to choose yd and yj to ensure that the left hand side gets sufficiently
larger than 2, for example yj = 5 and yd = 4.
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Maple worksheet for example 10, only for the purpose of verification by the referees

> restart;

> y1:=1;

 := y1 1

> y2:=1.4;

 := y2 1.4

> y3:=2;

 := y3 2

> n0:=1;

 := n0 1

> n1:=1;

 := n1 1

> n2:=1;

 := n2 1

> n3:=1;

 := n3 1

> c:=0.3;

 := c .3

> t:=0.5;

 := t .5

> px0:=t;

 := px0 .5

> px1:=((y3-t*y1)-((1-t)*y3))/(y3-t*y1);

 := px1 .3333333333

> px2:=((y3-t*y2)-((1-t)*y3))/(y3-t*y2);

 := px2 .2307692308

> test:=(t/px1)*(y2-y1)-c;

 := test .3000000000

> test:=y1/y2-(2*px1-t+((t-px1)/(1-px1)))/(2*px1*t);

 := test -.5357142857

> b10:=(n0*c)/(n1*(y1-c));

 := b10 .4285714286

> b10:=b10;

 := b10 .4285714286

> F31:=y3-t*y1;

 := F31 1.5

> b31:=(n1*c*(1-b10))/(n3*(F31-c));

 := b31 .1428571428

> F32:=y3-t*y2;

 := F32 1.30
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> b32:=(n2*c*1)/(n3*(F32-c));

 := b32 .3000000000

> Tax1:=t*((1-b10)*n1*y1+y2*n2+(1-b31-b32)*y3*n3+b31*y1*n3+b32*y2*n3

);

 := Tax1 1.824285714

> d:=y1*(t*(1-px1))/px1-y2*(t-px1)/(px1);

> 

 := d .2999999997

> F21D:=y2-t*y1-d;

 := F21D .6000000003

> b21:=(n1*c*(1-b10))/(n2*(F21D-c));

 := b21 .5714285708

> B21:=min(b21,1);

 := B21 .5714285708

> b32:=(n2*c*(1-B21))/(n3*(F32-c));

 := b32 .1285714288

> Tax2:=t*((1-b10)*y1*n1+(1-b21)*y2*n2+(1-b32)*y3*n3+b21*y1*n2+b32*y

2*n3);

 := Tax2 1.832857143

> pro:=(Tax2-Tax1)/Tax1;

 := pro .004698512373

> 

> 

> 

Page 2


