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1 Introduction

It is a fundamental insight, received from the standard analysis of tax eva-
sion, that efficiency calls for tax evaders to be charged the maximally feasible
fine. A sufficiently high fine even makes it possible to implement the first best
solution. Kolm (1973), taking up an argument introduced by Becker (1968),
famously claimed that efficiency considerations in a world with costly detec-
tion would require tax evaders to be hung with a probability approaching
zero. The intuition is that a given deterrence effect can be achieved at lower
cost by decreasing detection efforts and increasing severity of punishment.
In order to explain why historically the severity of punishment for crimes
has been declining since the middle ages while the cost of enforcement has
been increasing, economists have to resort to the argument that the general
acceptability of severe forms of punishment has decreased.? But, hypothet-
ically speaking, even if we were to reject the idea that tax evaders should
be hanged, would it not make sense to make them liable with their whole
belongings to vouch for the correctness of their tax declarations?

In this paper we show that even if the government follows a narrowly
defined objective of maximizing its tax revenue, it may find it worthwhile
to charge tax evaders less than the maximally feasible amount. We re-
consider the question of optimal punishments in an equilibrium framework
where the enforcement agency itself adjusts its behavior to the actions of
the citizens.® For this we apply the equilibrium tax evasion model of Lands-
berger/Monderer/Talmor (2000) - henceforth LMT - to a predatory set-
ting where the maximally feasible monetary punishment is imposed on tax
evaders. We characterize equilibria of the income reporting game. We show
that introducing the possibility for the government of granting a grace value
eliminates multiplicity of equilibria. Moreover, we show that for a small
tax rate and small auditing cost the possibility to commit to a discretionary
punishment relief scheme increases expected tax revenue.

1See Borck (2004), Boadway/Richter (2005) and Dittmann (2006) for a discussion of the
relative merits of different fine regimes in the standard model. Theoretical consequences of
different fine regimes in the economics of crime are discussed in Polinsky/Shavell (2000).

2Dami/al-Nowaihi (2006) give an overview of approaches to solve this issue. They argue
that if citizen behavior is explained by prospect rather than expected utility theory less
severe punishment can be optimal.

3Pyne (2004) shows that with behavioral adjustments by police officers to legal stan-
dards, making it harder to convict criminals can reduce crime.



In order to appreciate our approach, imagine King John setting the tax
rate for the whole of his lands but delegating the task of enforcing the tax
rule to local sheriffs.* The sheriff hires tax inspectors as subcontractors on
the promise that they may keep anything that falls into their hands if a
village they inspect is found to have paid less than the proper tax. Here, the
inspectors - enforcement agencies essentially - impose the maximum fine as
the villagers vouch with all their belongings for even a small breach of the
tax code. Would it be desirable for King John to restrain his enforcers and
impose less than the maximum fine on at least some undutiful villages?

In an equilibrium model of tax evasion it is not immediately clear what
the answer to this question is.® If the fine is lowered compared to the preda-
tory equilibrium where undutiful villages are looted, the decreasing reward
to the enforcers induces a reduction of their efforts. Just like in the stan-
dard model of tax evasion, villagers respond by increasing tax evasion. A
full account of equilibrium behavior, however, has to allow for a changing
composition of evading villages. The unique limit predatory equilibrium is
characterized by the poorest villages underreporting, intermediate villages
acting strictly honestly while the richest village is indifferent between these
two options. In those circumstances it could pay for the King John to be
more lenient with an intermediate village which hands in a false report if it
could thereby persuade the richest village not to hand in precisely the same
false report. Here, in equilibrium, the former reports will drive out the latter.
We can show that if the intermediate villages’ total post tax income which
can be appropriated by the tax inspectors does not exceed the total post tax
income of the richest villages there generally exists a stable revenue superior
equilibrium with discretionary punishment relief.

As we point out in our discussion, our results generalize to settings where
the sheriff acts as a profit maximizer and do not hinge on the assumption

4We refer here, of course, to the mythological villain also known as Prince John. That
the historical figure, King John, signed the magna carta which is the first document to
formally constrain the powers of government, adds a nice twist to our story.

5Note that in an Nash equilibrium zero tax evasion cannot be supported except in
trivial cases: It cannot be an equilibrium for no-one to submit a false report because the
enforcement agency would not want to audit any income report. But if no income reports
are audited every citizen would want to deviate and submit a false income report with
positive probability.

6In a modern variant of this tale, German minister of finance Steinbrueck has, after
some consideration, decided to subject citizens availing of the Swiss tax haven to less than
the maximally feasible scrutiny.



that revenue from tax evasion does not accrue to the king. The reason why
we choose our particular motivating story is that it naturally suggests non
commitment as a behavioral standard whilst with a monolithic tax adminis-
tration there might be conflicts between attempts to commit to more rigorous
tax enforcement in the short term and adaptive behavior in the long term. It
is a remarkable result of our analysis that making a certain degree of commit-
ment available in a Nash equilibrium turns behavioral standards suboptimal
which are obtained as optimal standards in a model with full commitment.

Equilibrium models of tax evasion have been pioneered by Reinganum
and Wilde (1986) and LMT. Alm and McKee (2004) report experimental
results on coordination games where the tax authorities select their auditing
strategy endogenously. Reinganum/Wilde construct a separating equilibrium
where each citizen underreports and the enforcement agency can correctly
infer their type. However, due to increasing auditing costs only a fraction
of reports in each income category is actually audited. In the equilibrium
of Reinganum/Wilde the government applies an audit probability which de-
creases in reported income. LMT focus on a model with an exogenously
given, linear fine on evaded tax, linear auditing costs and risk neutral citizen
who may use randomized reporting strategies. In equilibrium, income reports
are audited up to a threshold level, citizens with income above the threshold
report just more than the threshold and citizens below the threshold random-
ize over all income reports and are indifferent to truth telling. All reported
income levels which get audited are audited with the same probability.

In our model, by contrast, for sufficiently low detection costs, all citizens
with incomes above a threshold strictly prefer evading taxes over truth telling
but randomize over the report which they submit. The income threshold it-
self is the highest income reported - and audited - in equilibrium. Citizens
below the threshold income are either honest or report zero income. The
existence of a threshold income level can be easily understood: In the preda-
tory situation citizens end up with the same (zero) income when detected.
Because for any false income report, a richer individual saves more taxes
than a poor individual, a rich individual is always more easily persuaded to
submit any given false report. That the zero income report is potentially
attractive for every income group is a consequence of the linear specification
of the model. An agent is indifferent between a lottery in which she looses
everything with probability ' and having her income taxed at rate r’. As
a consequence, the income reporting game admits multiple equilibria, each
of which is supported by a detection probability which decreases in reported
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income. a unique equilibrium, however, obtains if there is a vanishingly small
"grace” value which is left to detected tax evaders. Such a grace value has
relatively more worth to poorer villagers, so they tend to be more easily
tempted to submit a false report. The only equilibrium surviving this refine-
ment is one where the richest village is indifferent between truth-telling and
evasion and the poorest evade. Moreover, we demonstrate that if the king can
commit to a discriminatory fine scheme which depends on the tax evaders’
true and reported income, tax revenue may increase. In particular, for suffi-
ciently small tax and detection cost, stable, revenue superior equilibria with
commitment generally exist.

Section 2 sets out the model. Section 3 derives and refines the predatory
equilibrium. Section 4 discusses the substantive effects of a commitment
possibility. Section 5 concludes.

2 The model

Income y is a realization of an integer in Y = {3°, ..,y } with ¢ = 0.7 In
the (finite) population, the probability that an agent is of type y* is n*. We
assume for every k, n* > 0. We consider a two stage signalling game where
in the first stage of the model citizens declare their income for tax purposes.
A citizen of income class y* reports income x* € X* where X* = {¢° .., y*}.
That is, an income in Y may be reported and no citizen reports more than her
true income. There is a proportional tax rate on declared income 7 € (0, 1).
In the second stage, each tax enforcer is assigned a class of income reports, z°,
for which he is in sole charge® and he subsequently selects an audit probability
for those income reports. If an income report gets audited, the enforcer incurs
a cost c. In the situation with predation, if a tax evader who has reported
2" is detected to have income y*, his fine f(y*, ') is net income after taxes
minus a grace level D(y’, z*). Initially, we assume that the grace level is
constant and small, i.e. it satisfies D < (1 — 7)y".

Citizens maximize expected income and tax enforcers maximize expected
net receipts from enforcement. A citizen with income 3* chooses a (mixed) re-
porting strategy which is a vector 8% = (8(y*, 2%)),icy with Y sicy By, xt) =

TOur results generalize to the case where there is a minimum income level , 3° > 0,
which is exempt under the fine and under the tax scheme.

8 As strategy choices are constrained to satisfy the the equilibrium conditions, our
results do not change if we allow for assignments of competing audition rights.



1.9 The probability that ' is announced if strategy vector (., ') is used is
W= n* Bk, o)
ykey
The probability that an agent is of type 3* when she announces z° is

ety = 2N 0

Tax enforcers choose probabilities p = (p(z?)).icy. The (expected) cost
of auditing income x’ with a probability p(z?) is p(z*)hic. For a tax enforcer
in charge of auditing x?, the expected net profit from selecting an audition
probability p(z?) is

(') (8,p) = h'p(z") K (a"), (2)

where 8 = (8")o<k<n and

K(') = qa) fy",2") —c, (3)

ykey

the marginal gain from auditing a citizen who reports z'. A citizen’s
objective function is E*(3,p) = y* =D icyk B(y*, 2%)ra =D picyk B(y*, xt)x
p(x®) f(y*, 2%). A strategy configuration is a Nash equilibrium if

and
E*(3*,p*) > E*(B", (87", p*) for all B* and for all k.

It is easy to see that for A > 0 and in the absence of constraints on the
detection technology a government agent chooses p(z') = 1 if K(z%) > 0 and
p(x?) =0 if K(z') < 0. If h* = 0 or K(z') = 0 it may select any detection
probability. In order to focus on such x? which are actually reported we need

Definition A report x' is in the support of 3, or x* € S(8), if h'(3) > 0.

9(Citizens with the same income select the same mixed strategy. We are not concerned
here with the purification of mixed strategy equilibria.



3 Predatory equilibrium

Given detection probabilities p(z?) and p(z7/) we denote indifference between
two signals z* and 27 for income group y* as (2%, p(z?)) ~y (27, p(27)). A
citizen i is indifferent between reporting x' and truthfully reporting y* if

p(a')D + (1= p(a"))(y" — 7a') = (1 - 7)y". (4)

(4) equates expected income with report x’ and the certain net income with
the truthful report y*. It defines for each income the indifference set cor-
responding to the security level which this agent can ensure in the game
by telling the truth. It is convenient to extend the domain of the indiffer-
ence relation to define indifference contours on (z,p) which are continuous
in (RJ)? and each of which contains one indifference set. Indifference con-
tours are concave shaped, decrease in y and intersect the z-axis at (y*,0).
For D > 0 the contour relating to an agent’s security level intersects the
p-axis at (0,p(y*, D)) with p(y*, D) > 7. Security contours of agents with
higher income have a smaller p-intersect. Security contours intersect at a
signal level ¢ with p(§) = 7. For D = 0, £ = 0. Higher indifference con-
tours are located left below the security contour. For any two indifference
contours passing through some (2’ p’), 2’ > 0, the one relating to the lower
income citizen is steeper. By the following lemma, indifference sets for two
individuals intersect at most in one point other than 2°:

Lemma 1 For z¢: 0 < 2t < ¢/, 27: 2* < 27 < o/ and constant D: If at
giwven auditing probabilities p(x?), p(x?) a citizen with income 3y is indifferent
between reporting x' and a7 all citizens with income y" > y' strictly prefer
reporting 2/ over x°.

Proof. 3 weakly prefers 27 over ' if p(2/)D + (1 — p(2?))(y — 27) >
p(x')D+(1—p(2"))(y —72"). Rearranging yields (p(27) —p(z"))D > (p(27) —
p(x))(y—7xi)+(1—p(z?)) (27 —2"). For D < y—7x’ this implies p(z7) < p(z?).
The claim is confirmed by substituting 3" > ¢/ in the indifference condition.

If for one income group y*" truth-telling and reporting some 2 are weakly
preferred over all other strategies then all other y have strict preferences over
reporting z¢ or truth-telling. The proof of the following lemma is in the
appendix and uses the fact that security contours intersect at (£,p = 7).
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Lemma 2 For x' > 0, " >3/ and constant D: If at p(z'), v is indifferent
between truth-telling and reporting x* then (a) if p(z') < T, ' strictly prefers
reporting ='; (b) if p(z') = 7, y" is also indifferent and (c) if p(z*) > 7, 3"
strictly prefers truth-telling.

Let I* be the set of reports which a citizen with income * is prepared to
submit, i.e. which maximize her utility.

Lemma 3 Let D be a constant. Then in equilibrium there can be at most
one income group y*  for which there is a report x* > & and z*,y* € I*.

Proof. Let there be an income report z° € (0,y*") and an audit proba-
bility p(2*) such that y*" ~ e (27, p(2')) and o, y*" € I"".

a) Assume that there is an income report 2’ € (0, ') such that for ¢’ > y*°
we have y' ~,/ (2/,p(z")). Then by lemma 2 (2, p(z2")) >, v'. Reporting z’
at p(z') is feasible and, therefore, 3y ¢ I'.

b) Next, consider y” < y*. Say there is y” ~,» (2,p(z")) for some
2" € (0,3). But because 2” < y*" the result of part a) equally applies for 3"
and y*" ¢ I*¥" a contradiction.

For D = 0 we have £ = 0 such that everyone is indifferent between truth-
telling and reporting z° if p(0) = 7. For ¢ sufficiently small, we can construct
an equilibrium for this game with a pivotal income group y*". Citizens with
y < y*" are either honest or report 2°. Citizens with y > ¢*" are tax evaders.

Proposition 4 Suppose that D = 0. We focus on equilibria where there is
a highest report ™, such that x € S(B) for all x < 2™ and x & S(B) for
x > x™. An equilibrium for this income reporting game is characterized by
an threshold income level y* and an assignment of indifference sets I* which
satisfies the constraints

o= " }andz BN, 2" =1, (5)

" = {7, 2"} and Z e Bly F :U’) =1: k" <k <N(6)

M= {2 .27, y"} and Bly +Z o) =1, (7)

I = {ﬂfo,y}andﬁ(y,y)+ﬁ(y,w)—1f0w<k* (8)

By ah) € [0,1] for y* # ' and B(y*,y*) > 0 fory* <y* 9)
K(z) = 0 fora® < a2 <a¥, (10)
p(z") > 0 for 2° < 2" < 2* supports I* for all k € N. (11)
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Figure 1: Indifference contours in (z, p)-space and potential reports I*, sup-
porting an equilibrium (3, p) of the income reporting game.

In such an equilibrium all agents with y > y* evade tazves, all agents with
y* < y*" either report honestly or report 2°. p(a°) = 7 and p(z) decreases
in x . This equilibrium is unique up to the selection of y*  and B(y*,y*) for
yF < y*¥". The equilibrium exists if ¢ satisfies the constraints

yN k(,k /
o nv\y - —Tx . * —
< yF> ( )) for all ' > min (2", 2NV 71) (12)
y:’ nk
yr>a!
S e B Yk 13
o ()

The proof of this proposition is in the appendix. Figure 1 illustrates the
equilibrium conditions: In an equilibrium satisfying proposition 4 the set of
potential reports I* for any two groups of the rich (y* > 3*") with adjacent
income levels overlap in one report. ¢ has to be smaller than average income
for the poor (y* < y*") by (13) and smaller than average net income for the
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rich if they report some income 2z’ exceeding z*", the income of group k*
by (12). The equilibrium is supported by beliefs which ensure that everyone
who submits a report exceeding z*" is audited. In a Bayes-Nash perfect equi-
librium such a belief held by the government would be that the probability
of receiving such a report from type " is 1. We can construct many equi-
libria of the type of proposition 4 by perturbing the reporting probabilities
B(y*, y*) of citizens with income below y*", ensuring K (2°) = 0. Different
choices of 5(y*,y*) may be compatible with different choices of y*". The
source of this multiplicity is the fact that with D = 0 in an equilibrium ev-
eryone may submit a report 2°. Below we show that with some arbitrarily
small uncertainty about the magnitude of the punishment this source of mul-
tiplicity is eliminated. Another source of a possible multiplicity of equilibria
is the magnitude of detection cost c. While an equilibrium always exists
unless c¢ is prohibitive, there is an intermediate range for ¢ where the equi-
librium conditions can be fulfilled by more than one choice of k*. However,
this ambiguity vanishes for sufficiently small c.

Proposition 5 For sufficiently small ¢ the equilibrium is unique with k* =
N up to a selection of B(y*,2°), y* < y*".

Proof. See part 3 of the appendix.

The following proposition shows that for a grace value D > 0, only equi-
libria are possible where there is 7 < 3*" such that all ¥* < 7 report 2%, ¥ is
indifferent between being honest and reporting z° and everyone with y* > ¥
strictly prefers being honest over reporting z°. For vanishing D we get a
refinement of the equilibria compatible with proposition 4.

Proposition 6 Say an equilibrium exists for D = 0. Now let D : 0 < D <
(1—7)y*. Then in every equilibrium there is 3 such that B(y*,2°) = 1 for all
vyt <7, Byk, 2% <1 for y* =7 and B(y*,2°) = 0 for v* > Y. Furthermore,
these strategies are equilibrium strategies. Letting D — 0, the resulting limit
equilibrium is also an equilibrium of proposition 4.

Proof. See part 4 of the appendix
The following proposition is immediate from propositions 5 and 6:

Proposition 7 For sufficiently small ¢ and D — 0 there is a unique preda-
tory equilibrium.
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4 Is there a role for commitment?

Say King John considers making a promise to relieve some citizens from
the most severe punishment. This may take the form of raising D for all
his subjects or to announce a shielded income D(y’, 2*) which depends on
true and reported income. The king would do so if under such a regime he
expected an increase in tax revenue.

We have already shown that imposing a small punishment relief, D =
¢ — 0 eliminates equilibria from the tax evasion game. We now ver-
ify whether revenue superior equilibria become available once we introduce
commitment to a discriminatory punishment relief scheme in the limit equi-
librium of proposition 6. We verify whether deviating from such an equi-
librium by choosing D(y*,2') > ¢ for a single report/income pair (z¢,17)
is an optimal strategy for the king. What we have to achieve is to make
one agent § < 3 < 9* indifferent between truth-telling and saying z¢,
0 < 2¢ < 9/. We then adjust randomization probabilities for ¢/ and y*
to satisfy the equilibrium conditions. Say in the limit equilibrium we have
(2, p(z),€) ~pe (@9, p(2@H1),€) ~pw ... ~p= y*". First, observe that we
cannot lower the probability of p(z?) or y*" would strictly prefer report-
ing 27 over reporting honestly. Therefore, we adjust D(y?, 2¢), i.e. the in-
come which is left for 1/ if she reports % and is detected to ensure that
(24, p(z?), D) ~,i y. It is easy to show that for this to be the case the con-
dition D(y’, %) = e (y7 —x?) must hold. For y*", we revoke D(y*", 2%) = ¢,
so an agent of income class y** does no longer consider submitting income
report z%. Clearly, such a policy avoids introducing additional multiplicity
of equilibria. In part 5 of the appendix (lemma 15), we show that if all types
have equal probability such a policy is also optimal to replace all z¢ income
reports from 4*" by reports from g7, whenever it is optimal to replace some
reports. Furthermore, we only consider cases where c is sufficiently small
such that B(y*", 24) = 0 is compatible with equilibrium!’. For simplicity, let
also y*" = V. We can use definitions (1) and (3) to get

. 1 n'c
k ) _ . .
By" ,x") = Y —— fori=4d,j (14)

in the original equilibrium with D — 0. In the new equilibrium

19Tf the condition K'(2') cannot be met this way, one would want to set D(y/, x4) such
that all i/ strictly prefer ¢ to truthtelling and leave D(y*", z%) = ¢.
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1 ne

By, a?) = (15)

niy —rad — Dy, a?) — ¢’

. 1 (1—pB@, 2% )nlc
B(yk 7xj), = W yk* ETJ;J )—)C (16)

must hold. (14) ensures that an enforcer is willing to verify any report
in the 2'-category at a cost of ¢ when the probability that a report is truth-
ful is n'/(Bn*" + n') and the probability that a report submitted by a tax
evader with a true income of y*, promising the enforcer a fine of y** — 7a?,
is An*" /(Bn*" +n?). In the new equilibrium, 3’ replaces y*~ in submitting re-
ports in the x¢-category according to (15). The equilibrium condition (16) for
x’-reports submitted by y** displays an indirect effect of increasing 8(37, 2%),
as the reduction in the equilibrium probability of honest reports of 27 drives
out some of the dishonest reports of 27 by y*". Tax paid by *" and 3’ in the
original equilibrium is 7[(1 — B(y*", %) — B(y*", 27) )" y*" + B(y*", 2 )nk 29 +
B(y*", x)n** 2 +niy’] and in the new equilibrium 7[(1— B(y*", 27) )nk y*" +
By*, x?)Yn* 27 + By, ) niz? + (1 — B(y?, %) 7nIy’]. The change in tax is
positive if

*

A = By, 2Ny + B, 27) - BN, 20 I (T —y7)  (17)

—By, Yy’ + By, 2% — By, 2]yt > 0.

It makes sense to restrict attention to revenue superior equilibria with
commitment which satisfy an additional stability requirement:

Definition 8 An equilibrium is deterring if for any two income groups 17,
y*, y* >y and any feasible report x' there is no coalitional deviation which
increases 3(y’, x%) to some level B(y?, x') < 1 such that K () < 0.

It is easy to see that equilibria of proposition 4 are deterring and that
revenue superior equilibria where the construction satisfies conditions (1), (2)
and (3) are also deterring. The reason why we introduce this refinement at
this point is that punishment relief invites citizens with lower incomes such as
1/ to replace citizens with higher income %*" in submitting a dishonest report
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x' in equilibrium. There could be equilibria which unravel if the invitation is
taken up by sufficiently many citizens: if ¥/ — 72— D < ¢ no tax enforcer will
ever want to investigate 2 even if he knows almost for sure!! that a citizen
who reports x' is a tax evader with income 7. It is possible for the revenue
superior equilibria to depend on sufficiently few citizens of lower income 77
to take up the invitation (this might also be an optimal policy if conditions
(1) and (2) are violated). The condition K (z') = 0 may be fulfilled if higher
income earners y* submit reports of z¢. But clearly, such equilibria would
not be very interesting if they unravel once the unattractive targets of tax
enforcers take up the invitation in greater numbers.

The following proposition gives conditions under which a revenue superior
equilibrium with partial punishment adjustment exist:

Proposition 9 If all types have equal probability n' and for sufficiently small
c and T, there always exist income levels y* , y/ and y such that A > 0.
Moreover, the equilibrium reached in the new game with partial commitment
1s deterring.

Proof. See appendix.

It should be noted that this result is quite theoretical as with vanishing
cost the probability of a true report converges to 1 under any regime. The
following example shows that the increase in tax from punishment relief is
not unsubstantial:

Example 10 Let y° =0, y' =1, y?> = 1.4, y3 = 2. Total income is 4.4 and
all types have equal probability. The tax rate T = 0.5 and detection cost ¢ =
0.3. Consider an equilibrium of proposition 4 where y* = 2 with strategies
Byt 2°) = 0.4286, B(y?, y?) =1, B(y?, ') = 0.1429 and 5(y3, 2?) = 0.3 and
detection probabilities p(z') = 0.3333 and p(z?) = 0.2308. Sheltering assets
worth 0.3 from punishment if y* is detected when she has reported x' raises
tax receipts from 1.8243 to 1.8329. The equilibrium with punishment relief is
supported by strategies B(y*, z') = 0.5714 and B(y3,y*) = 0.1286.

The following table sums up our results for different levels of c:
c 0.0001 0.1 0.2 0.3 0.4 0.5
Tax rev. old  2.199893584 2.0877 1.9628 1.8243 1.6727 1.5125
Tax rev. new 2.199893585 2.0883 1.9659 1.8329 1.6889 1.5125

1 The cost of auditing most likely consists of the cost of visiting the citizen and the cost
of ascertaining the truth.
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We observe that the gains from commitment remain positive but vanish as
detection cost gets very small. For detection costs of ¢ = 0.5 a cornersolution
is obtained. For intermediate values, gains in tax receipts can reach 1 percent
for c=0.4.

5 Discussion and Conclusion

This paper has shown that a tax reporting game with a predatory govern-
ment relying on decentralized tax enforcement with maximally feasible fines
generically displays multiplicity of equilibria. Introducing a small but general
punishment relief significantly reduces the number of equilibria. If detection
costs are also small, there exists a unique limit equilibrium with punishment
relief. Furthermore, we have shown for a limiting case that granting punish-
ment relief is a way of increasing government revenue. In particular, this is
the case if income levels are sufficiently widely spread, types have equal prob-
ability and detection costs and tax rates are small. Whilst general existence
can be shown under those conditions, gains from commitment are vanishingly
small. However, we provide examples where the gains from commitment are
substantial.

A few remarks are due on the assumptions we make to derive our results:
Whilst it would appear as if assuming away fines as a source of income for
the king unduly advances the case for penalty reduction, our results are more
general than the particular setting suggests. With linear detection costs,
the tax enforcement activity always creates zero profits ex post. Moreover,
despite our assumption that decisions are decentralized to each individual
tax enforcer, nothing would change if it was the sheriff who acted as a profit
maximizer. The equilibrium conditions we derive continue to be relevant if
one maximizes aggregate profits. The same results would hold even if the
king himself were to enforce his tax laws, provided that he cannot commit
himself to impose other than the ex post optimal detection policy.

Needless to say that our results critically hinge on how we define the
feasible set on which the maximum penalty is defined. When unbounded
penalties induce unbounded negative returns, even the first best solution may
be implemented. On the other hand, decision makers are typically willing to
accept fatality risks in particular when the probability is sufficiently small.
In addition, actually meting out the harshest punishments requires some sort
of commitment on the side of the enforcers. Once we accept that pay offs are
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bounded, it makes sense to identify the feasible set with the positive income
and the assets which the government can seize and which otherwise could be
taxed.'? This has the advantage that fines and taxes are defined on the same
opportunity set. Moreover, this arrangement satisfies the ulterior fairness
test in dividing resources between the citizen and the state of letting Caesar
have what belongs to him. Finally, in our motivating story, we assert the
death penalty to be infeasible because villagers always have the option to
escape into the dark woods of Sherwood forest.

Actually playing the equilibrium of this game, even if it is unique, re-
quires a high degree of coordination on the side of citizens. Full coordination
might be difficult to achieve (see Alm/McKee, 2004). In particular, the use of
randomized strategies might be seen as counterintuitive. However, if agents
have different preferences for tax evasion, it may be possible to support equi-
libria in purified strategies. Finally, the assumption of risk neutral citizens
is of course restrictive. To the extent that risk aversion makes poor citi-
zens relatively more reluctant to evade taxes it works against the strategy
configuration in the unique limit equilibrium. However, the set of equilib-
ria described in proposition 4 would still provide some guidance as to which
strategy configuration to expect. Our conjecture is that risk aversion would
favour an equilibrium where all y < y** strictly prefer reporting truthfully.
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6 Appendix

6.1 Proof of lemma 2

Let there be an income report 2¢ € (0,4*") and an audit probability p(z?)
such that y*" ~ i (27, p(2')) and o', y*" € I*". Now consider y > y*". We
had denominated (£, p(§) = 7) the intersection of security contours, i.e. for
v and y*" we have p(§)D+ (1 —p(€))(y—71E) = (1—7)y. For D = 0, we have
p(x?) < p(€), #° > £. Because the security contour of ¢y passes right above
(2%, p(2?)), v strictly prefers (z°, p(z%)) over truth-telling. For D > 0 we find
that if p(z') = p(€) then £ = ' = 7 and 2° is on the security contour of both
y and y*". If p(2?) < p(€), then & < 2 and ¢/ prefers (2%, p(z?)) to telling the
truth. Finally, if p(z?) > p(€), then & > 2’ and the security contour passes
left below z¢, i.e. ' prefers truth-telling.
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Next, consider 3’ < y*". For D = 0, p(2') < 0, £ < 2%, the security
contour of 3" passes right below (2%, p(z’)) and 3" strictly prefers truth-
telling. The same is true for D > 0, p(z*) < p(§). For D > 0, p(z*) > 0,
truth-telling is dominated for 3”. Collecting arguments, if p(z') < p(£) all
y > y*" strictly prefer lying over truth-telling and all y < y*" strictly prefer
truth-telling over lying and the relationships are reversed for p(z') > p(€).

6.2 Proof of proposition 4
Before we establish the proposition we need to prove two claims:
Claim 11 p(z°) > 7 is not an equilibrium

Proof. Suppose p(z°) > 7 were true. In that case everybody rather
reports truthfully than reporting z°. But then 2° = n® > 0 and K (2°) < 0
so the tax enforcer picks p(z°) = 0, a contradiction.[]

Claim 12 Let p(z') > 0 and ', 2" € S(B). Then, in equilibrium it must be
that p(z") < p(z') if 2" > 2’ for all ' > 0.

Proof. Suppose that not. Then for all y* > 2” it is the case that
7' =, 2. But then K(2"”) < 0 and because 2" € S(3) the tax enforcer sets
p(z”) = 0, a contradiction.[

From claim 12 follows immediately that K(z') = 0 for all 2' € S(8),
2t < ™. Suppose that not. Then p(z?) is either 0 or 1. The latter case is
trivial given claim 11 and 12, so focus on p(z?) = 0. In that case, no x’ > z°
is audited and it must be that x* > =™, contradicting that = € S(3).

We now construct equilibria satisfying K (2%) = 0, Vo' € S(8). All 2 €
S(B) must be named in some false reports. By lemma 3 there can be only
one income y** such that y** € I*" and 2 € I*" for some 2% # 2°. Therefore,
y* < y* prefer reporting truthfully over reporting > 2° and y* > y*
prefer submitting a false report over reporting y*. By lemma 2, I* and I,
k # j intersect at most in one point and in general [ vt v # () if we want
to fulfill 3 i x B(y*, 2%) = 1 for a tax evader (i.e. y* > y*"). Note that our
definition of equilibrium includes the case where I*N 17 = () as we can always
set B(y,2") = 0 for one agent. Finally, by (13) we can fulfill K (z°) = 0 only
using agents with y < y*".
Claim 13 2™ = min(2*", 2V "1),
o e IV,

where x* is the truthful report of y**, and
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for all B(y™,2N"1) > 0. By (12), K(2V¥=1) > 0, so p(zV~!) = 1. Pro-

ceeding to ™ = V72, ., ¥t we find that for any 2™ > 2*" having
yN k k m

m " —Tz™) .

c < o X b ) fulfilled subsequently for all m = N — 2, N — 3, ... is

ZZ‘l€>zm nt
sufficient to ensure that K (z™) > 0. This is condition (12). Because x% is
never audited, ™ > 2*" is impossible if z¥° = 2V or ¥ = 2N¥~1. Suppose
the sign in (12) is reversed. Then K(z2™) < 0 and p(z™) = 0.

If z*" ¢ IV then no one submits a false report 2%, so K (z*") < 0. Finally,
we have to check that it is actually optimal for ¥ not to submit a report
2’ > 2. As by claim 11, p(2°) < 7 such a report is clearly dominated.[]

By the following claim we can actually construct profiles p(z*) to support
I*:

Claim 14 The constraint p(x) > 0 is never binding.

Proof. Let 2" ~! € I¥ N I¥*1. Because the contour corresponding to
I¥"+1 cuts from below I*" at 2% ~1 and I*" contains the point (p = 0,2%"), it
must be that p(z*¥) > 0 to have 2" € I¥*!. The same is true if 2" !
is reached via a sequence of indifference conditions for " *! € I¥*! N
I¥+2 aF =1 e IN-1 N IV where the contour corresponding to the set with
the higher index cuts the other from below (see the graph).[]

6.2.1 Existence and uniqueness

Choose S'(y,2°) and £ (y,y), y < y* such that K(2°) = 0. By (13) such a
profile exists. Here we set S(y* ,2°%) = 0. (5)-(7) give the following system
v = B3* with
) B(y]jv : wkk)
1 A
1y
B,(yk>yk) B(By(]g{/—l l.r*—&-)l)
1 ) /8* = k*—&—l’ r*4+1 )
1 B(y y L )
Bly* 2™

k* r*
A ) Pt
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a

1 1

ok N-1k
B — 1 1
aN—l,r +1 ak +1,7*+1
1 1

: ak +1,r ak T

0 ak™d
where a** = nk(y* — 72t — ¢) and we have used B(y* ,y*) = 1 —

" B(y*,27) in the first row of B to replace a™'¥" = B(y*",y*"). For con-
creteness and in order to save space we have imposed N = k* + 3, taken
#IF =2 for y* > y** set B(y*",2°) = 0, and used a typical element a*"7 for
0<j<ret3

B has full rank. So given k* and a selection of 3(y, y) for y < y*" to satisfy
K (2°) = 0 the solution of 8* = B~'4 uniquely determines 3*. Furthermore,
given that the a*%’s are all positive and all 5(y%,%") > 0, y* < *", looking

kp*x(,k .1 k 7 k+1 g%, k+1 .0 k+1 7
ey e i<
y* — 12t n' > 1, it is easy to see that we can solve the system such that all
coefficients in 5* are positive and smaller than 1.

An equilibrium exists for ¢ — 0 with £* = N. Now let 8(y*,2°) = 0
for all 0 < k < k* and define ¢™** the maximum c¢ for which that there is
an equilibrium for £* = 1 under this constraint on 3.}* We have to show
that there is an equilibrium for all ¢, 0 < ¢ < ¢™**. For convenience, we
write Bf for B(y*, x%) and y¥ for y* — 72°. We show that an equilibrium for
c < ™ always exists but that in general this equilibrium is not unique.
The equilibrium exists if for increasing threshold values, k* = J, k¥ = J + 1,
™ (J 4+ 1) > ¢™n(J) and, consequently, there is no ¢ with ¢®®(J + 1) <
¢ < c™®(J). The equilibrium is not unique, if the inequality is strict, because
there is ¢’ with ¢™*(J +1) > ¢’ > ¢™"(J) for which an equilibrium with
k*=J or k¥ = J+ 1 can be constructed.

Let k* = 1. Choose I' = {2° 2}, IV = {2° 2} and I* = {2°} for

at a typical expression,

13The extension is straightforward, notably for each added z?, add one line and one
column and for each added y > y*  add two lines and two columns.
14Such defined ¢™a* < ¢, the greatest ¢ which satisfies (12) and (13).
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k=2 .,N—1, thereby satisfying (5)-(8). At a°

Z =2 iy + Bentyg + By N y) = (1)
no‘l‘zzlnz‘l‘ﬁo‘l'ﬁo

and at z!:

N_N
11 yl _Cl(l).

(1= Bg)nt + BYn¥ N
Determine 3 such that ¢™*(k* = 1) = min(max(c°(1),c*(1))). Clearly, it
must be that 35 = 0. Now let k&* = 2. We have 2!, 2% € IV and 2°, 2 € V1.
At 20

ZZ s n,y ‘l‘ﬁgnng‘l’BN 1 N 1,y(])\f 1

="(2).
no_l_zi:g nt + 32+ By tnN-1

At 2t

N LpN=1yN-1

— 1 +Bln yl 201(2)

nl—l—ﬁl nN- 1—|—ﬁlnN

and at z2:
éVnNyQ _ 2(2)

(1= B3)n? + By n¥ N

We can determine @' such that ¢/(2) = ¢™(1), i = 0,1,2. For this choose
Bt =0 and B)~! = 1. Because ¢™(2) > ¢/(2) it must be that c™*¥(2) >
c™in(1). We can also see that the solution is in general non unique: ¢™*(k* =
2) is in general obtained for Bév_l # 1: Suppose that Bév =1 and nVy"N —

0. Then BY' = 0 and ¢'(2) < °(2), contradicting that ¢ is max1mal.
Because the expression for ¢°(1) implies that 33 ' = 1, we have ¢ (k* =
2) > cin(k* = 1) for B 1 #£ 1.

For the general case we determine ¢™"(.J) for k* = J and construct 3
for J + 1 which is feasible and supports ¢ = ¢™"(.J), so ¢™™*(J +1) > ¢ =
cmm(J). Say that for k* = J we have found B supporting ¢™®(.J) with

I7 = {20 oy, T8 = {a 2} for N > k> J with 27 = 27,
For concreteness, let I/ = {:U Ly’ } and I’ = {2° 2} so we obtain typical
expressions such as, at x°:

J J.J J+1 J+1 J+1
o Yo ‘l‘ﬁ

0
=c(J),
no—l—ﬁonJ+ﬁb]+1nJ+1 ()
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at .

J+1,_J+1,,J+1 J+2 J+2, J+2
B Ty T+ BTN

A 1
nl +B{+1nJ+1 —I—B{J’Qn‘]” =c(J),

at x7:

BJ” yJ _J
B’ + BinN =)

In ™(J) we have 8 = 0, 87 = 1. Now let k¥ = J + 1 with cor-
responding [ = {y’}, 17TV = {20 21 y/*1}, I¥ = I* for k < N and
IV = {27t/ 2/t At 20

b]+1nJ+1 J+1

Yo 0
=c(J+1),
nO _I_Bban +Bb]+1nJ+1 ( )
at xl:
Bl Iyt 4 {2yt
14 Al i1 . al+2 gr2  © (J+1),
+ 81T/t 4+ BN
at z7:
BJn us =c/(J+1).
n’ + pYnN
at /1
Bflv—&-lnNyJN

¢/ (J+1).

J+1 N =
Bran’tt+ By

Letting Bfﬂ — Oand Bf,VH — 0 we can fulfill the condition for /! and
for all other k ¥ — BF so we have ¢/(J + 1) — ¢™*(J). Because B was
selected to minimize ¢ it must be that ¢™(J 4 1) > ¢ — ¢™(J).

For the last step, we consider k* = N —1. The minimum cost is sustained
with IV~ = {20 yN¥=1} and IV = {2} At 20

N1N1N1
0 "’Bon?/o

0 _
no + By~ 1nN Lt By'ndY =cV=1), (18)
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at ©

BNNN

n™y » .
! d(N-=1),i=1,..,N —2, 19
prie = e R (19)
at V1
N _N,N
PNAMTYN vy, (20)
nNBN T 4 Byon®
The minimum is attained by setting B ~* = 0 and choosing all B 1# N

such that all K(z') = 0. Switching to k* = N, we have IV = {27} At T

BNNN

n yz % i
= (N),i=0,.,N—1. 21
e 1)

2~ is also feasible for k* = N and we have ¢™(N) > ¢™*(N — 1).

6.2.2 Show that p(z°) = 7.

Finally, we show that if the equilibrium of the reporting game satisfies
(5)-(13), then p(z°) < 7 is not compatible with an equilibrium of this
game: Suppose p(z°) < 7 were true. In such an equilibrium, everybody
has at least one strategy which is strictly better than truth telling, so ev-
erybody evades taxes. If we had p(z°) = 0 everybody would report z°, so
this cannot be an equilibrium. In order to construct an equilibrium with
p(z°) € (0,7) with we need K(z) = 0 for all z € {2° .,2™}. In an
equilibrium satisfying (9) we have B(y*,4*) > 0 for y* < y* and, there-
fore, 3= i pr sico(a) Zybzi q(y¥|x?) < 1. Now consider the equilibrium with
p(x®) < 7. Reports ' > 2™ cannot occur in equilibrium (see the proof
of claim 8 in the appendix) so in an quilibrium where everybody evades,
D wicam zics(d) doyksai A(YF|7Y) = 1. Therefore, 2™ > 2*". But this can-
not be an equilibrium either under condition (12) because ™ € S(3) and,
therefore, p(x™) = 1 (see proof of claim 8).
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6.3 Proof of proposition 5

Using conditions (18)-(21) in part 2 of the appendix we now show that for ¢
sufficiently small the equilibrium is unique. For ¢ — 0 there is an equilibrium
with £* = N where N’s strategy satisfies Zzzév - BZN — 0. Show that in
general ¢™(k* = N —1) > ¢, ¢ > 0. Recall that the population is finite and
all n* > 1 and X is finite as well. From the conditions for ¢/(N — 1) letting

Yt =0 min . ypin (— 20, Bxanv™ ) which is bounded
o~ = 0 we get ™" = mln(n0+6(1)vnN""’nN*1+B%,1nN) which is bounde

=N—1 N
from zero because Y ._,  f; = 1.

6.4 Proof of proposition 6

For D > 0 we have p(y", D) > 7. Say there is (z°,p(y*, D)) ~, y'. Then by
lemma 2 all y” > 3/ strictly prefer truth-telling to reporting z°.

Choose the smallest 7 such that K(z°) = 0 with 8(y,2°) < 1 and
B(y*, 2°) = 1 for all y* < 7 and select p(2°) to satisfy p(2°)D + (1 —p(z°)) =
(1 — 7)y. By lemma 2, all 3y > ¥ prefer truth-telling to reporting z° and all
y" < 7 prefer reporting 2° to truth-telling. This rules out any equilibrium
with SB(y*,2°) # B(y*,2°). Because in an equilibrium of proposition 4 ¢
satisfies (12) and (13) there must B and 7 < y** with B(y*,2°) <1, y* <%
such that K(z%) = 0 for all z° € S(3).

Finally, in order to show that the limit equilibrium is also an equilibrium
of proposition 4, recall that this equilibrium satisfies p(z°) = 7. For D — 0,
p(yt, D) — 7 = p(2°). The strategy profile 3 for the case D > 0 implies that
20 € I* for some y* <7 and 2 € I*¥ such that K(2%) = 0 for all 2° € S(B).
But then 3 satisfies the conditions in proposition 4.

6.5 Proof of proposition 9
In the following we write 3% for 5(y*, z%).

Lemma 15 If all types have equal probability, whenever A > 0 for some
B (y7, xd) > 0, it is optimal to select 3 (7, x%) such as to fulfill K'(z%) = 0.

Proof. Totally differentiating the condition for K'(z¢) = 0 we ob-

. dpk” k*,md nI[N(y —rax?—D)—1 . j *
tain % = — nk[*[g\zf/(yk*—de))—l]] with ), = y* — 727 — D and N =

By*, a)n* + By, x4)n? + const. Because y* > 3/, it follows that y* —
T2 — D > ¢! — 72 If group sizes are equal, N increases as we substitute
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By, x?) for B(y*", %) and this reinforces the marginal effect on S(y*", z%).

dﬁ . dﬁk dﬁj. .
The effect on revenue is ;BT’ = T[dﬁf (v* —y?) + (y? —y?) — ﬁﬂz(yk — 7).
Here % = —1 and d_[:f% is constant such that the claim follows.

As the lemma shows, when the government wants to see 3(y’,x¢) in-
creased at all, it is optimal to set D(y* ,2?) = 0. In that case, citizens want
to satisfy the equilibrium condition at z? by adjusting 3(y/,z?). By con-
struction, such an equilibrium, if it exists, is deterring. It remains to show
that there generally exist income levels such that A is positive.

Combining (14) and (16) we find that 8 — 85" = ﬁk* 3’ Recalling the
definition 27 = 7, we can re- Write (17) to give A/7 = [ + B B In*"y*" —
(B nk + Iy + (670 — BE k)2, Using the indifference condltlon

J
(4) for y* and gy’ at 2 and :cd in the expressions (14)-(16) we get

QU
QU
U

* & n-c *
W =)+ ==
1pand — ¢ =

3

Cc

—y)— = -y

[I]‘

with Z = ﬁ(;d)yj - ﬁird) — ¢. Recall that (y*" > ¥ > y?). Deviding

by (y*" — y%) and defining o = (SQ —Y )) we get

d d d
A >0 _nc + ¢ nT(l—a)>nTCa
1—71 k* 1—71 k* - -
e TC Ty T 6= =
Further, we write
1—7 7 D

(24 Y — 1 24y c C

1—p( )1—7— L*P( ) +— = (1 o Oé) >
—pend T € —pn ¥ €

In order to prove the claim we let ¢ — 0. After some straightforward
manipulation the expression converts into

Jj_ D k*
Y 1-7 > Yy

y—yd T oy —yd
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We know D = pl(;;) (17 —y?). From the indifference condition of y*" in the
original equilibrium we get p(z?) = %;zj)

" . Inserting the expression for D
yields after some transformations

Yy - y* N 1 y¥ =y
yj — yd yk* _ yd 1 _Tyk* _ Tyd

Now, letting 7 — 0 we find the condition

Yy’ y" Y =y
Y —yd ~ Yk — gyl * y*

If y*" gets large relatively to y?, the right hand side converges to 2. So we
just have to choose y? and 9’ to ensure that the left hand side gets sufficiently
larger than 2, for example 3/ = 5 and y?¢ = 4.
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| Maple worksheet for example 10, only for the purpose of verification by the referees
[ > restart;

> yl:=1;
L vl =1
[ > y2:=1.4;
L y2:=14
[ > y3:=2;
L y3:=2
[ > n0:=1;
L no =1
[ > nl:=1;
L nl =1
[ > n2:=1;
L n2:=1
[ > n3:=1;
L n3:.=1
[ > ¢:=0.3;
L c=.3
[ > t:=0.5;
L t:=.5
| > px0:=t;
L px0 :=.5

> pxl:=((y3-t*yl)-((1-t)*y3))/(y3-t*yl);
pxl :=.3333333333

> px2:=((y3-t*y2)-((1-t)*y3))/(y3-t*y2);

.2307692308

px2
> test:=(t/px1l) * (y2-yl) -c;

test := 3000000000
> test:=yl/y2-(2*pxl-t+((t-pxl)/(1-px1l)))/ (2*pxl*t);

test :=-.5357142857
> bl0:=(n0*c)/ (nl*(yl-c));

L b10 :=.4285714286
[ > bl0:=bl0;
L b10 :=.4285714286
[ > F31l:=y3-t*yl;

F31:=1.5

> b3l:=(nl*c* (1-b10))/ (n3* (F31l-c));

b31 :=.1428571428
> F32:=y3-t*y2;

F32 -=1.30
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T

vV VvV

b32:=(n2*c*1) / (n3* (F32-c));
b32 :=.3000000000
Taxl:=t* ((1-bl0) *nl*yl+y2*n2+ (1-b31-b32) *y3*n3+b31*yl*n3+b32*y2*n3
)
Taxl :=1.824285714
d:=yl*(t*(1-px1l)) /pxl-y2* (t-pxl)/ (px1);

d :=.2999999997

F21D:=y2-t*yl-d;

F21D :=.6000000003
b21l:=(nl*c* (1-b1l0))/ (n2* (F21D-c));

b21 :=.5714285708
B2l:=min (b21,1);

B21 :=.5714285708
b32:=(n2*c* (1-B21) )/ (n3* (F32-c));

b32 = 1285714288
Tax2:=t* ((1-bl0) *yl*nl+ (1-b21l) *y2*n2+ (1-b32) *y3*n3+b21*yl*n2+b32*y
2*n3);

Tax2 = 1.832857143
pro:=(Tax2-Taxl) /Taxl;

pro :=.004698512373
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